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- During the 20th century, randomized controlled trials (RCT) supported the discovery 
of effective drugs & treatments. 

- RCT data can be summarized and contrasted to consistently estimate an average 
treatment effect (ATE) estimand (under straightforward and plausible assumptions) 

- Precision medicine arose in the 21st century to  

- Address differences among people  

- Develop methods to address this heterogeneity 

- Although the average treatment effect is identifiable under assumptions which are plausible 
in many randomized trials, average treatment effects may not be ideal at the level used for 
individual decision making because individual patients generally differ in at least one 
dimension from the average trial participant.

MOTIVATION
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- While the ATE from an RCT can indicate which treatment may be superior on 
average, it does not answer the question of the practicing doctor: “What is the most 
likely outcome when this particular drug is given to a particular patient?” 

- We want to target estimands that more closely reflect the patient-specific nature 
of clinical practice. 

- There is an incongruence between the overall average effect of treatment in a 
study population and what is best for an individual (based on their specific 
characteristics, needs, and desires). 

- Clinicians are interested in determining the best treatment for a given patient. 

- This leads to great interest in understanding how a treatment effect varies across 
patients - often termed Heterogeneity of Treatment Effect (HTE).
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QUESTIONS WE SEEK TO ANSWER

- 1) How can we reliably detect HTE 
in clinical trials? 

- 2) What guidance can we offer to 
the practitioner in terms of what 
sample size is necessary to expect 
valid performance of different 
estimators? 

- 3) What guidance can we offer to 
the practitioner with a particular 
sample size for which method 
should be chosen to get better 
performance?
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CAUSAL INFERENCE
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- Under the potential outcomes framework in causal inference, a treatment effect (TE) is a 
contrast between potential outcomes.

POTENTIAL OUTCOMES AND THE ATE
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Trial Arm W = w Potential 
Outcome

Treatment 1
Control 0
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- Fundamental problem of causal inference: only one of the two potential outcomes ( or ) 
for a patient  can be observed in the real world.  

- Since both potential outcomes cannot be observed for the same individual, then the treatment 
effect for any particular trial participant, the individual treatment effect , is 
unidentifiable. 

- While the individual causal effects are not identifiable, the average treatment effect in the 
population can be identified under several assumptions.  

- The ATE is often the targeted estimand in clinical trials: 
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The ATE exists when there is a mean difference between the treated and the control 
potential outcomes: 

 

Recall the distinction between measures of association versus measures of causation.  

ATE = E[Y(1) − Y(0)] = E[Y |W = 1] − E[Y |W = 0]

POTENTIAL OUTCOMES AND THE ATE
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Association does not imply causation in general, but the design of a randomized controlled trial can make 
plausible a set of assumptions under which association and causation can align.

association compares 
 across E[Y |W = w] w

causation compares 
 across E[Y w] w



- Positivity: within strata defined by covariates , subjects have a probability  of 
either having either treatment level. This can be violated if particular groups are 
ineligible for treatment. 

- Consistency: An individual with observed treatment  will have outcome  
equal to  

- No interference: A subject's potential outcome is not affected by other subjects' 
exposures 

- Ignorability (unconfoundedness):  Potential outcomes are independent from 
observed treatment. Independence between potential outcomes and treatment can 
be marginal or conditional on covariates. 

Together, the assumptions of consistency and no interference are called the Stable 
Unit Treatment Value Assumption (SUTVA). As a part of SUTVA, we also assume there 
are not multiple versions of treatment (e.g., different treatment by location, or differently 
skilled interventionists) 

X > 0

W = w Y
Y (w)

ASSUMPTIONS REQUIRED TO IDENTIFY THE ATE:
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- The same assumptions used to identify the ATE can be used to identify 
conditional average treatment effects. The conditional average treatment effect 
(CATE) is defined by: 

 

- The CATE is the average treatment effect conditional on belonging to a subgroup 
defined by .

CATE(x) = E[Y(1) − Y(0) |X = x]

x
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ATE: differences in average over treatment arms

Looking at a group with Lisa’s 
covariate values 

{X1 = x1, X2 = x2, …}
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ATE: differences in average over treatment arms

Looking at a group with Lisa’s 
covariate values 

{X1 = x1, X2 = x2, …}



 CATE(x) = E[Y(1) − Y(0) |X = x]

CATEi = E[Y(1) − Y(0) |X = xi]
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Looking at someone with Lisa’s 
covariate values 

{X1 = x1, X2 = x2, …}

Individualized CATE 
how we would expect 
the treatment to affect 

someone LIKE Lisa
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- Estimation of CATEs can  

- allow for building of personalized treatment regimes,  

- hypothesis generation,  

- foster development of better understanding of the (biological, social, or other) 
causal mechanisms leading to the outcome 

- help researchers identify specific subgroups that are more likely to benefit from a 
treatment
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- Estimation of CATEs can  

- allow for building of personalized treatment regimes,  

- hypothesis generation,  

- foster development of better understanding of the (biological, social, or other) 
causal mechanisms leading to the outcome 

- help researchers identify specific subgroups that are more likely to benefit from a 
treatment

- Various methods for estimation and inference of "individualized'' CATEs have been 
proposed with good asymptotic properties, but the sample size required for good 
statistical properties may depend heavily on the underlying data.  

“asymptopia” vs. real life 

- Despite this, many practitioners are implementing these methods in clinical trials 
with smaller or moderate sample sizes where the performance of these methods is 
not clear.



Our goal: 
Investigate the finite-sample properties of popular 
methods for estimation and inference of individualized 
CATEs 

Through simulation, we will consider: 
A range of scenarios and sample sizes (with focus on sample 
sizes that are more commonly used in clinical trials)  

Our desired outcome: 
Gain a better understanding of when one can achieve valid 
CATE inference using RCT data in practice.
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SIMULATION SETUP
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Things I’m varying:

• Number of effect modifiers 
• Distributions of these 

random variables 
• Number of nuisance variables 
• Sample sizes 
• Data generating mechanism

Simulate a trial with N 
participants, their 
baseline covariates , 
true  and true 
potential outcomes

X
CATEi

In each replicate, assign 
treatment or control on 
a 1:1 basis. 

Then, split this data 1:1 
into “testing” and 
training 



Estimate  using training set 
• Linear Regression 
• Linear regression, misspecified  
• Causal Forests 
• Causal Forests, with hyperparameter tuning

̂CATEi for i = 1…N

Simulate a trial with N 
participants, their 
baseline covariates , 
true  and true 
potential outcomes

X
CATEi

In each replicate, assign 
treatment or control on 
a 1:1 basis. 

Then, split this data 1:1 
into “testing” and 
training 
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Things I’m varying:

• Number of effect modifiers 
• Distributions of these 

random variables 
• Number of nuisance variables 
• Sample sizes 
• Data generating mechanism

Modeling technique

Metrics I’m comparing (test set)

• Bias of  
• 95% CI coverage of  
• Model based standard errors 

for estimating 

̂CATEi
̂CATEi

̂CATEi
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Things I’m varying:

• Number of effect modifiers 
• Distributions of these 

random variables 
• Number of nuisance variables 
• Sample sizes 
• Data generating mechanism

Linear or nonlinear data 
generating mechanism

N = 500, 1,000,  
2,000, or 4,000

Nuisance variables =  
0, 10, 20, or 40

2 proposed distributions 
for effect modifiers:  

standard Normal or Bernoulli(0.5)  
➡  we can have 0 to 16 total EMs

Number of effect 
modifiers = 0, 1, 4, 8



- The true data generating mechanism was either simple linear addition such that 

     

- For the nonlinear data generating mechanism we used this function (which is similar to what 
was used to validate causal forests) 

         where     

CATEi =
j

∑
i=1

Xi

CATEi = ∑
i

f(Xi) f(x) = 1 +
1

1 + e−2(x− 1
4 )
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+ 48 scenarios

252 scenarios

= 300 total scenarios



- Let’s imagine an example simulation situation (1 out of the 300 scenarios run) where 

- N = 1000 participants 

- 2,000 simulation replicates 

- 1 Normal true effect modifier and 1 Bernoulli true effect modifier 

- 10 nuisance variables 

- Linear data generating mechanism (DGM)
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FOR ONE SCENARIO…
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E[Y |X = x, W = w] = β0 + β1w + β2x1 + β3x2 + β4x1w + β5x2w

W = treatment indicator Treatment interaction terms for  
2 effect modifiers

+β6x6 + … + β15x15 + β16x6w + … + β25x15w

10 nuisance variables: base effects  
and terms for effect modification

Y = outcome

Estimate  using training set 
• Linear Regression 
• Linear regression, misspecified  
• Causal Forests 
• Causal Forests, with hyperparameter tuning

̂CATEi for i = 1…N

Modeling technique

Linear Regression:  

“please specify a model form”
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{y}{w}{x1, x2, …, x15}

W = treatment indicator

Treatment interaction terms for  
2 effect modifiers

10 nuisance variables

Y = outcome

Estimate  using training set 
• Linear Regression 
• Linear regression, misspecified  
• Causal Forests 
• Causal Forests, with hyperparameter tuning

̂CATEi for i = 1…N
Modeling technique

Causal Forest:  

“tell me X, Y and W and I’ll do the rest”
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{y}{w}{x1, x2 …, x15}

W = treatment indicator

Treatment interaction terms for  
2 effect modifiers

10 nuisance variables

Y = outcome

Estimate  using training set 
• Linear Regression 
• Linear regression, misspecified  
• Causal Forests 
• Causal Forests, with hyperparameter tuning

̂CATEi for i = 1…N
Modeling technique

Causal Forest:  

“tell me X, Y and W and I’ll do the rest”

What hyper parameter tuning? 
Check out the bonus slides 



AVERAGE INDIVIDUAL CATE BIAS ACROSS REPLICATES
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95% CI COVERAGE
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MODEL BASED STANDARD ERROR
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WHAT WE’VE ALL BEEN WAITING FOR

(AGGREGATED) RESULTS
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Mean = 0.949

SE(Mean) = 0.006

TRANSLATION TO AGGREGATE RESULTS

N = 1,000
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Mean = 0.949

Mean = 0.873

SE(Mean) = 0.214

SE(Mean) = 0.006

TRANSLATION TO AGGREGATE RESULTS

N = 1,000
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NORMAL 
EFFECT 

MODIFIERS
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BERNOULLI 
EFFECT 

MODIFIERS
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NUISANCE 
VARIABLES
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SAMPLE 
SIZE
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LINEAR  
DATA GENERATING MECHANISM 
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BIAS

🤫
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BIAS
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BIAS
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BIAS
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COVERAGE: 
0 EFFECT MODIFIERS (NULL SCENARIO)

notice the y axis range
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COVERAGE
🤫
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COVERAGE
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COVERAGE



MODEL BASED SE: LINEAR DGM & ALL COMBINATIONS OF 
EFFECT MODIFIERS
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MODEL BASED SE: LINEAR DGM & ALL COMBINATIONS OF 
EFFECT MODIFIERS
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MODEL BASED SE: LINEAR DGM & ALL COMBINATIONS OF 
EFFECT MODIFIERS
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MODEL BASED SE: LINEAR DGM & ALL COMBINATIONS OF 
EFFECT MODIFIERS
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Perhaps higher SE are 
necessary to achieve nominal 

coverage
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REVISITING SE VS. COVERAGE 

Perhaps higher SE are 
necessary to achieve nominal 

coverage
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NONLINEAR  
DATA GENERATING MECHANISM 



BIAS: VARYING # NORMAL EFFECT MODIFIERS
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BIAS: VARYING # NORMAL EFFECT MODIFIERS
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notice the y axis changes



COVERAGE: 
VARYING # 
NORMAL 
EFFECT 
MODIFIERS
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COVERAGE: 
VARYING # 
NORMAL 
EFFECT 
MODIFIERS
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COVERAGE: 
VARYING # 
NORMAL 
EFFECT 
MODIFIERS
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SE: VARYING # NORMAL EFFECT MODIFIERS

notice the y axis changes



- Under a linear DGM, linear regression is the clear choice in terms of SE(Bias) and 95% CI 
coverage. 

- Linear regression also has lower model based standard errors when there are 0 nuisance 
variables regardless of linear or nonlinear DGM. 

- However, a linear DGM is likely not plausible in most real life situations, so for practitioner 
context we should compare methods under a nonlinear DGM. 

- If there is only 1 Normally distributed treatment effect modifier under a nonlinear DGM, 
causal forests with default settings are a good choice for 95% CI coverage. 

- All methods evaluated are unbiased, but causal forests have much larger SE(Bias). 

- As expected, as sample size increases, SE(Bias) decreases - except for misspecified 
linear regression which has relatively constant SE(Bias) width across N. 

- Implementing limited hyper parameter tuning improves SE(Bias) and 95% CI coverage 
proportion as compared to default causal forests. But, tuning is computationally 
expensive. 

- We can see the asymptotic nature of casual forests, but it’s also clear that good performance 
doesn’t happen until after N = 4,000 (which could be an issue for practitioners)

KEY TAKEAWAYS
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THANK YOU
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BONUS SLIDES
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Tuning plots, linear DGM
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Tuning plots, nonlinear DGM
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Tuning plots, 1000 replicates & linear DGM
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Random Forests
A primer from ESLR and ISLR

Random forests (Breiman, 2001) are a substantial modification of bagging that builds a large collection of de-correlated 
trees, and then averages them (ESLR) 

• An ensemble approach: “combines many simple “building block” models to obtain a single and potentially very 
powerful model” (ISLR) 

• Build a number of decision trees on bootstrapped training samples 

• When building the trees, each time a split in the tree is considered, a random sample of predictors is chosen 
as split candidates (out of the full set of predictors) 

• A fresh sample of predictors is taken at each split 

• This means that when building a random forest, the algorithm is not allowed to consider a majority of the available 
predictors 😱  

• By forcing a split to only consider a subset of predictors, we force ourselves to reduce correlation among trees 
(in the setting where there is one very strong predictor) which results in lower variance overall (decorrelated 
resulting trees can be more reliable)



Causal Forests

👩💻

a nonparametric method 
that extends the widely 
used random forest 
algorithm 

promised “provably valid 
statistical inference” 

asymptotically unbiased 
and Normally distributed 

has a very convenient R 
package
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For any trial enrollment, participants were split 1:1 into treatment and control groups.  

For control, the outcome   which necessarily has an 
expectation of 0.  

For those in the treatment group, the outcome   

(so the only difference between treatment and control is the treatment 
effect, TE)

Y = ϵ ∼ N(0,1)

Y = TE + ϵ



The true data generating mechanism was either simple linear addition such that 

 

or under a nonlinear data generating mechanism similar to the functions used to validate causal forests modified to 
include more values in the range of a standard normal random variable 

 

Thus, the complex data generating mechanism was  

 

In the simulation framework, the data is further split 1:1 into testing and training sets. The training set is used to build the 
model and the testing set was used to evaluate

TE = ∑
i

Xi

f1(x) = 1 +
1

1 + e−2(x− 1
4 )

TE = ∑
i

f1(Xi)



- The first step to estimating  parameters in a trial is to fit an outcome model. Let’s start 
with a general framework for  estimation using an unspecified supervised learning 
algorithm to predict outcomes. 

- Supervised learning: learn from data based on: 

- features (observed random variables such as covariates and treatment assignment)  

- to predict an outcome (in this case, we assume a continuous treatment response).  

- To avoid overfitting, we take a random subset of the full data and designate it as training 
data where we have both the outcome and the features for the study participants.  

- We then build a model and predict the outcome in the testing dataset for other 
participants that only have their features (and not the outcome) observed.

CATE
CATE

SUPERVISED LEARNING
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