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CHAPTER 1

Background

1.1 Motivation

Randomized controlled trials (RCTs) are the gold-standard study design used to generate high-quality evidence about

the causal effect of a treatment or intervention (Piantadosi, 2017; Friedman et al., 2015). During the 20th century,

clinical trials supported the discovery of effective drugs for the treatment of many diseases including cancer, infectious

diseases, cardiovascular disease, and mental illnesses. Under straightforward and plausible assumptions, data from

different arms of an RCT can be summarized and contrasted to consistently estimate an average treatment effect

estimand, i.e., the difference in the average outcome of interest had everyone been assigned the intervention vs. had

everyone been assigned the control.

Recent research has acknowledged the important role of treatment effect heterogeneity. The field of precision

medicine has arisen in the 21st century to address differences among people and develop methods to address such

heterogeneity (Collins and Varmus, 2015; Kosorok and Laber, 2019; Piantadosi, 2017). While the average treatment

effect from RCTs can indicate which treatment may be superior on average, it does not answer the question of the

practicing doctor: “What is the most likely outcome when this particular drug is given to a particular patient?” (Kent

et al., 2018). Much research has moved toward targeting estimands which more closely reflect the patient-specific

nature of clinical practice.

Further reflecting the important role of rigorously conducted clinical trials, evidence-based medicine has become

the dominant paradigm for developing clinical recommendations and decision-making tools. Although the average

treatment effect is identifiable under assumptions that are plausible in many randomized trials, average treatment

effects may not be ideal at the level used for individual decision making because individual patients generally differ in

at least one dimension from the average trial participant. In that way, many clinicians’ initial concerns about evidence-

based medicine reflect an incongruence between the overall average effect of treatment in a study population and

deciding what is best for an individual based on their specific characteristics, needs, and desires (Kent et al., 2010).

Given that clinicians are interested in determining the best treatment for a given patient (as opposed to inferring utility

from the average trial result), there is growing interest in understanding how a treatment effect varies across patients -

often termed Heterogeneity of Treatment Effect (HTE) (Kent et al., 2018; Varadhan et al., 2013; Willke et al., 2012).

1.2 Causal Inference

We will use tools from causal inference to define HTE and provide a brief review. Under the potential outcomes

framework in causal inference, a treatment effect (TE) is a contrast between potential outcomes (hypothetical future
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outcomes which would be observed under different possible treatment conditions) (Hernan and Robins, 2020). Stated

more generally, causal effects of treatments are defined by contrasts of potential outcomes under treatment levels

(Rubin, 2005). For simplicity, we focus this discussion on a two-arm trial. Let W = 1 indicate assignment to a

treatment arm and W = 0 indicate assignment to a control arm. Let Y 1 be the potential outcome under treatment and

Y 0 be the potential outcome under control. In this setting, only one of the two potential outcomes (Y 0
i or Y 1

i ) for a

patient i can be observed in the real world.

The fundamental problem of causal inference is that both potential outcomes cannot be observed for the same

individual, such that the treatment effect for any particular trial participant (the individual treatment effect, ITE)

is unidentifiable. The observed potential outcome corresponds only to the received treatment. The other potential

outcome is called the counterfactual because it is unobserved (latent) (Imbens and Rubin, 2015). For example, in a

clinical trial for a new blood pressure medication, we can only observe the outcome (e.g., change in blood pressure)

for the treatment that is actually received, not for other potential treatments.

While the individual causal effects are not identifiable, the average treatment effect in the population can be

identified under several assumptions (described below in Section 1.2.1). For this reason, the average treatment effect

(ATE) is often the targeted estimand in clinical trials. The ATE is defined through “contrasts of the mean potential

outcomes across the population” and exists when there is a mean difference between the treated and the control

potential outcomes (Hernan and Robins, 2020):

ATE = E[Y 1 −Y 0]
?
= E[Y |W = 1]−E[Y |W = 0] (1.1)

The second equality is plausible in a RCT under the identifiability assumptions described in Section 1.2.1. In other

literature, the ATE may also be called the Average Causal Effect (ACE). Even in settings where the average causal

effect is equal to 0, there may still be individual causal effects (Hernan, 2004). There are two potential null settings

where ATE = 0 overall: a) there is no causal effect for any individual (sometimes referred to as a sharp null) or b)

there are individual causal effects but the mean potential outcomes do not differ under treatment and control. The null

scenario will be detailed further in the simulation study results in Section 4.2.2.

There is an important distinction between measures of association versus measures of causation. The former

compares E[Y |W = w] across w while the latter compares E[Y w] across w, as described in Figure 1.1 (Hernan and

Robins, 2020). While association does not imply causation in general, the design of a randomized controlled trial can

make plausible a set of assumptions under which association and causation can align.
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Figure 1.1: Figure inspired by Hernan and Robins (2020) depicting the difference between association and causation

1.2.1 Assumptions Sufficient to Identify the ATE

With observed data, causal effects may be identified and estimated under sets of conditions called identifiability as-

sumptions (Hernan and Robins, 2020). The assumptions required to identify the ATE include:

Positivity: within strata defined by covariates X, subjects have a probability > 0 of either having either treatment

level. This can be violated if particular groups are ineligible for treatment.

Consistency: An individual with observed treatment W = w will have outcome Y equal to Y w.

No interference: A subject’s potential outcome is not affected by other subjects’ exposures.

Ignorability (unconfoundedness): Potential outcomes are independent from observed treatment. Independence be-

tween potential outcomes and treatment can be marginal or conditional on covariates.

Together, the assumptions of consistency and no interference are called the Stable Unit Treatment Value Assumption

(SUTVA). As a part of SUTVA, we also assume there are not multiple versions of treatment (e.g., different treatment

by location, or differently skilled interventionists) (Rubin, 2005). Potential outcomes are well-defined when we can

assume SUTVA and positivity. To identify the ATE, we also need ignorability.

1.2.2 Plausibility of Causal Inference Assumptions in an RCT

Randomization is useful in generating convincing causal inferences (Hernan and Robins, 2020). In the setting of

a RCT, the assumptions described in Section 1.2.1, which can be quite strong in observational settings, are often

plausible:

• Positivity: Satisfied based on study design and eligibility criteria.

• Consistency: Satisfied when there is just one version of each treatment.
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• Interference: Could occur in trials of infectious disease treatments, educational programs, or other settings where

one person’s outcome is influenced by interactions with others (Hudgens and Halloran, 2008). This should be

evaluated in the context of each clinical trial; we will focus on settings where this is assumed to be satisfied.

• Marginal ignorability (unconfoundedness): Satisfied in a randomized experiment (treated and untreated groups

are exchangeable)

Under these assumptions, the ATE can be identified as E[Y |W = 1]−E[Y |W = 0] and thus estimated using a simple

contrast of means. In essence, RCTs typically put more burden on the design and implementation phase of a study,

but yield data from which it is often trivial to draw causal inference compared to observational studies, leading to the

equivalence in Equation 1.1.

1.3 Subgroup Analyses and the Realm of Precision Medicine

While straightforward to identify and estimate, the average treatment effect does not closely mirror the personalized

nature of clinical practice. We have established that the ATE is insufficient to learn about heterogeneity in treatment

effect across the population. So, how can we evaluate treatment effects across the patient population? Conventional

approaches include one variable at a time “subgroup” analyses which often do not detect differences within strata and

falsely enforce a “consistency of treatment effect” across subgroups (Kent et al., 2010). Furthermore, these methods

have other shortcomings - we generally would need to conduct too many subgroup analyses across the multitude

of covariates collected in modern clinical trials, rendering them underpowered and vulnerable to detecting spurious

associations (Kent et al., 2010; Brookes et al., 2004). Statistical best practices include documenting prespecified

analysis plans. While these plans can help avoid the detection of spurious associations and an increased Type I error

rate associated with multiple testing, the trade off with prespecifying all analyses could mean missing “strong but

unexpected” treatment effect heterogeneity (Wager and Athey, 2018).

Even in the setting where there is a large and clinically meaningful treatment effect difference across strata, con-

ventional “one variable at a time” comparisons are poorly calibrated to detect differences between risk strata because

conducting inference on one variable at a time does not reflect the fact that patients may have multiple characteristics

that influence risk simultaneously (Kent et al., 2010). For example, in the blood pressure medicine trial mentioned

earlier, patients will differ in their set of covariates but some variables will frequently co-occur (ie., high biomarkers

for both blood sugar and cholesterol) such that it would be hard to find a set of patients with just one factor and not

the other. Another related limitation is that this approach only considers two-way interactions, ignoring the potential

for interaction between two or more covariates with the treatment. In other words, higher-order interactions between

covariates will be missed by conventional “one variable at a time” methods. That being said, there is a “degrees-of-

freedom” tradeoff the practitioner should consider when deciding which hypothesis tests to conduct.

4



1.3.1 Characterizing HTE with Conditional Effects

Similar assumptions to those used to identify the ATE can be used to identify conditional average treatment effects

(assumptions like positivity must be broadened to hold across potential effect modifiers as well). The conditional

average treatment effect (CATE) is defined by:

CATE(x) = E[Y 1 −Y 0|X = x] (1.2)

where the x of interest will vary depending on the scientific question (in practice the full set of baseline covariates

and the set of potential effect modifiers can be distinct; we use X generally moving forward to consider these sets

to be identical for simplicity). Trivially, in the setting where there are no effect modifiers, the CATE(x) = ATE for

all x. Otherwise HTE is present. In words, the CATE is the average treatment effect conditional on belonging to a

subgroup defined by x. “Conditional” refers to the idea that the treatment effect may vary across different subgroups

in a population depending on their covariate values. In the context of this work, the covariates, x are measured at

baseline. Traditionally, one might condition on a set of single baseline covariates in a series of subgroup analyses, as

described in Section 1.3. However, estimation of “individualized” treatment effects is becoming more popular (i.e.,

estimation of a CATEi corresponding to each unique xi observed in a trial) to account for potentially complex HTE

which cannot be easily captured by subgroup analyses. Note that such “individualized” effects are CATE parameters

and not individual-level treatment effects.

In order to identify and estimate CATE(x) using the observed data (Xi,Yi,Wi), we must assume strong ignorability

such that treatment assignment is independent of the potential outcomes conditional on the covariates (Wager and

Athey, 2018).

Y 0
i ,Y

1
i ⊥Wi |Xi (1.3)

We assume that assumption 1.3 is guaranteed under proper randomization. As X is typically high-dimensional,

many methods for estimation of individualized CATEs entail leveraging a supervised learning approach. There are

many potential advantages of being able to estimate CATEs. Estimation of CATEs can allow for building of person-

alized treatment regimes, hypothesis generation, or development of better understanding of the (biological, social, or

other) causal mechanisms leading to the outcome (Künzel et al., 2019; Hernan and Robins, 2020). In the realm of

personalized medicine, targeting the CATE can also help researchers identify specific subgroups that are more likely

to benefit from a treatment.
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1.4 Contributions of This Thesis

Various methods for estimation and inference of “individualized” CATEs have been proposed with good asymptotic

properties, but the sample size required for good statistical properties may depend heavily on the underlying data and

heterogeneity. However, many practitioners are implementing these methods in clinical trials with smaller or moderate

sample sizes where the performance of these methods is not clear (Afshar et al., 2024; Seitz et al., 2023; Goligher et al.,

2023). Previous simulation studies often consider sample sizes of 5,000 participants or greater. Studies that do consider

smaller sample sizes do not include metrics about confidence interval coverage (Hoogland et al., 2021) or do include

coverage but not under the setting of heterogeneity (Wager and Athey, 2018). Thus, these methods are being used in

trials with smaller sample sizes than those which have been the focus of previous investigations of empirical properties

of these methods.

The goal of this work is to investigate the finite-sample properties of popular methods for estimation and

inference of individualized CATEs across a range of scenarios and sample sizes with focus on sample sizes that

are more commonly used in clinical trials to get a better understanding of when one can achieve valid CATE inference

using RCT data in practice.

In line with our goal, these are a few questions we seek to address:

1. How can we reliably detect HTE in clinical trials?

2. What guidance can we offer to the practitioner in terms of what sample size is necessary to expect valid perfor-

mance of different estimators?

3. What guidance can we offer to the practitioner in terms of which method should be chosen to get better perfor-

mance at smaller sample sizes?
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CHAPTER 2

Methods

2.1 Traditional HTE Methods

To begin, we review traditional methods for assessing treatment effect heterogeneity. As these are commonly per-

formed using regression models, we focus on the linear regression setting for simplicity. The traditional approach

entails consideration of heterogeneity “one variable at a time” which can be facilitated by two very similar approaches:

subgroup analysis and interaction analysis.

Put simply, subgroup analysis entails estimating a treatment effect in a subgroup defined by patient characteristics.

Conventional subgroups tend to be defined on the basis of sex, age, body mass index, or other measured baseline vari-

ables (Yarnell and Fralick, 2024). This approach is commonly used because it is straightforward to understand and use

clinically apparent variables to form subgroups. Although this approach is frequently employed in current literature,

investigations based on subgroup analysis could be considered too simplistic and often do not yield practical insights

(Yarnell and Fralick, 2024). Subgroups can also be formed according to baseline risk of the outcome (independent of

treatment assignment), or formed according to predicted treatment effect (Goligher et al., 2023), although these are

less straightforward to prespecify.

HTE can also be assessed by performing inference for the coefficient of an interaction term in a model. For

example if we wish to test whether X2 is a true effect modifier in the linear regression model:

E[Y |X = x,W = w] = β0 +β1w+β2x1 +β3x2 +β4x1w+β5x2w (2.1)

we would test whether β5 = 0. Testing for interaction across a covariate can provide a more formal approach to study

differential effects than comparing confidence intervals for the treatment effects in subgroups defined by that covariate

for overlap. It also avoids forced categorization of continuous covariates and should result in more efficient estimates

of auxiliary parameters. As mentioned earlier, research best practices stipulate that hypothesis testing should be part

of a pre-specified analysis plan because pre-specification helps reduce the detection of spurious associations (Type I

errors), but as described in Section 1.3, pre-specifying all analyses could mean missing unexpected treatment effect

heterogeneity - ignoring the increasingly hard to pre-specify potential interactions between two or more covariates

with the treatment.
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2.2 General Framework for CATE Estimation

Given the limitations of traditional HTE methods, modern frameworks for assessing HTE based on estimation of

CATE parameters have become increasingly popular. In particular, leveraging supervised learning models to estimate

CATE(x) for all unique x (or a subset of unique x) observed among trial participants can yield an insightful exploration

of heterogeneity which avoids many of the aforementioned limitations. This approach is sometimes termed estimating

“individualized treatment effects” but we use the term CATE throughout to avoid confusion with individual treatment

effects, which are not identifiable due to the fundamental problem of causal inference.

The first step to estimating CATE parameters in a trial is to fit an outcome model. Here, we describe a general

framework for CATE estimation using an unspecified supervised learning algorithm to predict outcomes. Later we

will provide more details and explore performance of specific learners. In supervised learning, we would like to learn

from data based on a set of features (observed random variables such as covariates and treatment assignment) to

predict an outcome (in this case, we assume a continuous treatment response). To avoid overfitting, we take a random

subset of the full data and designate it as training data where we have both the outcome and the features for the study

participants. We then build a model so we can predict the outcome for other participants that only have their feature

set (and not the outcome) observed. This proportion of the data with only the outcome is the test data (Hastie et al.,

2017).

The proportion of data in the testing and training subsets may be selected by the practitioner, so for simplicity, we

use a 1:1 split throughout. The training set is used to fit the model for Y conditional on X, where the model should

explicitly or implicitly consider interactions between treatment and covariates since the goal is to investigate HTE. In

most supervised learning problems, we then evaluate model performance on the testing data (which can be considered

a hypothetical second independent sample). In our case, the testing (holdout) set serves as the set where CATEs are

estimated but for which the true CATEs would only be known in a simulation.

To do this, we calculate predicted potential outcomes by first taking the testing data set and coercing all W = 1 and

then calculating model-based predictions. For example, in the setting of linear regression, model-based predictions

follow the form:

Ŷ 1(x) = x∗1
β̂ (2.2)

where β̂ is estimated using the training data and x∗w denotes a design matrix with treatment coerced to w, covariates

set to the observed x, and interactions between treatment and covariates. We then repeat this procedure to calculate

all model-based potential outcomes as if all participants were in the control group: Ŷ 0(x) = x∗0β̂ . Finally, we can

calculate the model-based conditional average treatment effects:
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ĈATE(x) = Ŷ 1(x)− Ŷ 0(x) (2.3)

The CATE is a function of x. We are interested in estimating the CATE for all observed values of the covariate

matrix in our holdout set where X = x. Using a contrast of predicted potential outcomes from a single outcome model

is a version of g-computation sometimes referred to as S-learning (Künzel et al., 2019). While other frameworks

such as T-learning, X-learning, and doubly-robust learners exist, these are not the focus of this thesis (and choice of

framework should have less impact when focusing on the randomized trial setting).

We then form confidence intervals for ĈATE(x) at each observation. The relevant methods for forming confidence

intervals based on each supervised learning model are described in their respective sections below. In the simulation

study (described in Chapter 3) we are able to assess whether the confidence interval captures the true CATE for each

individual in a simulated clinical trial. In this thesis, we will consider two outcome model methods for estimation and

inference: linear regression and random forests (implemented through the causal forest procedure) which we describe

in the following sections.

2.3 Estimation of CATEs with Linear Regression

Linear least squares models make strong assumptions about the structure of the relationship between the features and

the outcome (Hastie et al., 2017). In reality, the association between features and outcome rarely follows an exactly

straight-line relationship, but we may prefer the stability and optimality of ordinary least squares for the trade off of

estimating a first-order approximation to the relationship.

Ordinary linear regression is a semiparametric method with structure imposed on the mean model. Given a N ×K

design matrix X = (x0,x1, . . . ,xk−1) where x0 is generally a vector of ones for the intercept, we predict a length N

outcome vector, Ŷ most commonly by using the method of ordinary least squares (OLS). In ordinary least squares, we

estimate the set of coefficients β by minimizing the residual sum of squares ||y−Xβ ||2. Then the fitted (“predicted”)

value is called ŷ which, by definition, is equal to Xβ̂ . In this way, β̂ is the least squares estimator. Assuming y=Xβ +ε

where E[ε] = 0 and E[ε|X] = 0, β̂ is unbiased (Puntanen and Styan, 1989). The Gauss Markov theorem asserts that

the ordinary least squares estimator is the unique minimum variance unbiased estimator among all unbiased linear

estimators. Any linear combination, aT β of the β̂ s is the best linear unbiased estimator - no other estimator (linear

in y and unbiased for aT β ) has lower variance than aT β̂ . After fitting a linear model, we can estimate the CATE for

a specific x by calculating all model-based potential outcomes under the two scenarios of treatment and control in

Equation 2.2.
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2.3.1 Confidence Intervals for the CATE with Linear Regression

Next, we aim to form confidence intervals for the CATE. In the setting where we assume error homoscedascity

(Cov[ε] = σ2I), the covariance of the least squares estimator β̂ is equal to σ2(XT X)−1. Recognize that σ2 is not

typically known, but can be estimated. Next, let C be a contrast matrix comparing the coefficients for the treated

and control subjects. For example, in Equation 2.1 where there are 2 effect modifiers, X1 = x1 and X2 = x2 and the

treatment indicator, W ,

Ê[Y |X = x,W = w] = β̂0 + β̂1w+ β̂2x1 + β̂3x2 + β̂4x1w+ β̂5x2w (2.4)

the relevant contrast matrix C is [
0n 1n 0n 0n x1 x2

]
such that the model based variance of ĈATE(x) is given by Var(ĈATE(x)) = diag(CCov(β̂ )CT), where diag(.) is a

function that takes a matrix and outputs a vector corresponding to the diagonal elements of the matrix. Finally, we

form the 95% Wald-based confidence interval for the CATE in the following manner, letting z1−α/2 be the 1−α/2

quantile of the Normal distribution:

ĈATE(x)± z1−α/2 ∗
√

Var(ĈATE(x)) (2.5)

2.4 Estimation of CATEs with Causal Forests

Before describing causal forests, we will first cover random forests which form the theoretical underpinning for causal

forests.

2.4.1 Random Forests

Random forests are a type of tree-based method for regression and classification developed in the literature between

1995 and 2001 (Ho, 1995; Breiman, 2001). A single decision tree is formed by segmenting the predictor space into a

set of simple bins which are summarized in the format of a tree where each “branch” is a decision (Hastie et al., 2017).

While one tree may be straightforward to interpret, by itself a single tree typically does not perform well in terms of

prediction accuracy. So, we employ an ensemble approach to combine many “building block” models consisting of

individual decision trees to obtain a single model which, at the sacrifice of interpretability, often has greatly improved

prediction accuracy (James et al., 2023).

Regression trees consist of a series of splitting rules, with the most important factor at the root of the tree. Regres-

sion trees are typically displayed upside down compared to a real tree. The root is at the top and the leaves (terminal

nodes) are at the bottom of the tree. In between the root and the leaves, the points at which the predictor space is split
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are called internal nodes and the segments that connect these nodes are called branches (James et al., 2023). This

structure lends itself to a nice graphical representation (Figure 2.1).

Figure 2.1: Example of a regression tree

The process of forming a regression tree involves two main steps. First, divide the predictor space into K distinct

non-overlapping partitions. Next, for each observation that falls into the region R j, predict the new outcome. Pre-

diction is typically done by using the mean of the response for the set of training observations included in R j (James

et al., 2023). Since we seek to minimize the residual sum of squares between the fitted and observed outcome in a

computationally tractable way, we employ recursive binary splitting. Recursive binary splitting is considered a greedy

approach because, at each junction for a decision, we make the best possible split at that particular step and do not

consider future potential splits that could have resulted in a better tree. This procedure top down in the sense that we

begin at the top of the tree (where all observations belong to one region) and make the first split into two branches

before proceeding to recursively make the next splits continuing on in this manner until we meet a stopping criteria.

Notice, regression trees assume a different model format from linear regression, where R1, . . . ,RM represent a

partition of the feature space (Hastie et al., 2017):

f (X) =
M

∑
m=1

cm ∗ I(X ∈ Rm) (2.6)

We may seek to adjust hyperparameters of tree building in order to minimize overfitting to training data (which

would result in poor model performance on unseen data). Imagine that we first build one very large tree T0 and then

obtain a subtree, T , by “pruning” the larger tree. This way, instead of considering the entire sample space of all

possible subtrees, we can consider only a smaller subset of candidate subtrees indexed by α , a nonnegative tuning
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parameter (James et al., 2023). Akin to the idea of using lasso for regularization in linear regression, the value of α

controls the balance between the subtree’s fit to the training data and it’s complexity. When α = 0, T = T0. As α

increases there is a penalty for more terminal nodes which encourages a smaller subtree. We can select a value for α

using cross validation, which is done in the simulation study described in Section 3.3.3.

One can use bootstrap aggregation, or bagging, to improve the performance of decision trees by lowering the

between-sample variance (Hastie et al., 2017). Using the bootstrap to resample from our dataset with replacement,

we generate B different bootstrapped training data sets. Then, we fit our model (in this case, the regression tree) on

the bth bootstrapped training data set. Bagging then consists of taking the average across all predictions - which is

particularly useful for regression trees because although individual trees have high variance (and low bias), averaging

across all B trees reduces the variance (Hastie et al., 2017; James et al., 2023).

Random forests consist of averaged predictions across a large number of regression trees. Following the idea of

bagging, the random forest method involves building a large set of de-correlated trees and then averaging across them.

Trees have the capacity to “capture complex interaction structures” - resulting in a noisy but approximately unbiased

model that can be greatly improved by averaging (Hastie et al., 2017). During bagging, we can take advantage of the

fact that each tree is identically distributed to apply expectation rules and recognize that the bias of all bagged trees

and the bias of an individual tree are the same - so the only way to reduce mean squared error (MSE) is by reducing

variance (Hastie et al., 2017).

Random forests improve upon the variance reduction from bagging by decorrelating the trees. During tree grow-

ing, we “shake up” the included predictors by randomly selecting input variables. The procedure is as follows. Before

each decision split, randomly subset the p set of predictors to m input variables (where m ≤ p) as the only candidates

for splitting. Like α , m is considered a tuning variable and is often selected such that m = p/3 or
√

p (Hastie et al.,

2017). By disallowing the tree from considering all possible predictors at each split, we’re able to dilute the influence

of a few strong predictors. For example, if there was one very strong predictor then it’s probable that each tree’s root

would have the same strong split - which would result in many correlated trees (and resulting predictions). We realize

the benefits of bagging when averaging across uncorrelated or only weakly correlated trees, which is why the insight

of using only m predictors is so advantageous for random forests (James et al., 2023).

To estimate the test error of a bagged model, we turn to out-of-bag (OOB) error estimation. On average, each

bagged tree includes about 2/3 of the observations, so the remaining 1/3 unused observations are called out of bag

observations (James et al., 2023). Since OOB estimates are very similar to N-fold cross validation and can be per-

formed in the sequence of fitting random forests, we can conclude training the random forest once OOB error reaches

stability (Hastie et al., 2017). In summary, we conclude fitting each tree when the residuals are minimized and we

conclude model training once OOB error is low enough compared to a threshold.
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2.4.2 Causal Forests

Causal forests are built upon random forests, which as detailed in Section 2.4.1, consist of averaged predictions across

a large number of regression trees. Causal forests therefore build on random forests’ utility in flexibly modeling

interactions in high dimensions, but causal forests are adapted to be directly useful for causal inference by directly

estimating heterogeneity in casual effects (Wager and Athey, 2018). Causal forests are composed of “causal trees that

estimate the effect of treatment at the leaves of the trees”. This nonparametric method, originally published in 2018,

was developed to perform well in the setting of numerous covariates where previous methods (like nearest neighbor

matching) had failed.

Causal forests were developed to estimate HTE “in the potential outcomes framework with unconfoundedness”.

Causal forests promise “provably valid statistical inference” due to properties of asymptotic unbiasedness and asymp-

totic normality which allows us to form confidence intervals and perform hypothesis testing (Wager and Athey, 2018).

Therefore, the key contribution of causal forests as compared to random forests is the capacity for asymptotic inference

(because the asymptotic properties of random forests were previously unknown).

2.4.3 Confidence Intervals for the CATE with Causal Forests

Due to the challenge of navigating the potential outcomes framework when it comes to prediction for causal inference,

we need to leverage asymptotic theory to extend support for statistical inference to causal forests (Wager and Athey,

2018). In order to conduct asymptotic inference with causal forests, some conditions are required:

• Trees “used to build the forest must be grown on subsamples of the training data” (Wager and Athey, 2018).

• Individual trees must be honest: at each point in the training set i, the response Yi must be used for either

“estimating within-leaf treatment effect” or to determine where to place splits, but not both (Wager and Athey,

2018).

In the potential outcomes framework with ignorability (unconfoundedness), consistency and asymptotic normality

of casual forests allow for the formation of confidence intervals for estimating HTE. Honest causal trees are required

to obtain confidence intervals for the CATE (Athey and Imbens, 2016). Asymptotic variance for causal forests can

be consistently estimated using the infinitesimal jackknife procedure (which assumes that the number of bootstrapped

trees is sufficiently larger to drown out any Monte Carlo variability of the forest so we only measure randomness in

ĈATE(x) in the training sample). Once we have an estimate for variance, it is straightforward to form confidence

intervals using Equation 2.5. This process can be carried out by the grf package in R.
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CHAPTER 3

Simulations

3.1 Data Generating Mechanisms

Suppose that the set of covariates is {X1, ...,X j,X j+1, ...,X j+k,X j+k+1, ...,X j+k+p} where the first j covariates are true

Normal effect modifiers, the next k covariates are true Bernoulli effect modifiers and the remaining p covariates are

not effect modifiers nor predictive of the outcome, which we label as nuisance covariates moving forward. Individual

covariates can be distributed either as a standard Normal variable or as a Bernoulli random variable with p = 0.5. W

is a binary treatment indicator (treatment or control group) with probability 0.5 of assignment to each arm and Y is a

continuous outcome. Both linear and nonlinear DGMs were considered. Simulations for linear DGMs were conducted

in R under the following set of scenarios:

Total trial enrollment (n): 500, 1,000, 2,000, 4,000

Number of true Normal effect modifiers: j = 0, 1, 4, 8

Number of true Bernoulli effect modifiers: k = 0, 1, 4, 8

Number of nuisance variables, Bernoulli distributed: p = 0, 10, 20, 40

For any simulated trial enrollment, participants were split 1:1 into treatment and control groups. For the control

group, the simulated potential outcome, Y 0 is assigned following a standard Normal distribution (and thus has an

expectation of 0). For those in the treatment group, the potential outcome consists of the treatment effect plus the

random noise that subjects experience in the control group (so the only difference between treatment and control is the

treatment effect, CATEi). In linear settings, the true data generating mechanism was simple linear addition such that

CATEi =
j+k

∑
i=1

Xi (3.1)

We also considered a nonlinear data generating mechanism similar to one of the functions used to validate causal

forests (Wager and Athey, 2018). In particular, CATEi = ∑
j
i=1 f (Xi) where

f (x) = 1+
1

1+ e−2(x− 1
4 )

(3.2)

We set k = 0 in all nonlinear settings, but otherwise explored nearly identical varying values of n, j, and p. In particular,

in the linear data generating mechanism setting, this resulted in 252 scenarios since we exclude scenarios with 0 true

predictors (Normal and Bernoulli) and 0 nuisance variables: 44 −4 = 252. We examined 48 scenarios in the nonlinear
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data generating mechanism, excluding the situations with Bernoulli effect modifiers as well as the scenario where there

were 0 Normal effect modifiers (as there would be no distinct nonlinear data generating mechanism in the scenario

with only nuisance variables): 4 trial enrollment sizes∗3 true effect modifiers∗4 nuisance variables = 48. After data

generation, the data is further split 1:1 into training and holdout sets. The training set is used to build the model and the

holdout set was used to evaluate performance. All simulations were run to 2000 replicates to balance computational

time with precision in inference.

3.2 The Estimand

Treatment effects are conceptualized under the potential outcomes framework (as described earlier in Section 1.2).

While the individual treatment effects are unobservable due to the fundamental problem of causal inference (ie. we

can’t observe the outcome under two distinct realities), we can estimate CATEi for any individual in a holdout set.

In our simulation, we are estimating individualized CATEs, CATEi, which refer to average contrasts in potential

outcomes for hypothetical subpopulations belonging to the same strata with baseline covariates xi. As the holdout set

varies in each simulation, we have a total of n estimands of interest in each scenario.

3.3 Methods for Comparison

3.3.1 Ordinary least-squares (OLS) Regression

After data is generated as described above, a linear regression model is fit on the training data using the lm() function.

CATEs and corresponding confidence intervals are estimated as described in Section 2.3.1. Model performance for

estimating the CATE (95% CI coverage, bias, and variance) is assessed using the holdout data. When the mean

model is not specified correctly, the ability of OLS to recover unbiased parameter estimates is compromised. We

anticipated that simple linear regression would perform better in the additive linear setting but would not recover

nominal confidence interval coverage in the complex non-linear setting.

3.3.2 Causal forest (CF) with Default Settings

The same data that was generated and used to train the OLS model is also used to fit a causal forest using the

grf::causal forest() function under the default settings. The code chunk below demonstrates fitting a causal

forest and extracting the estimates of interest. Performance is assessed in the holdout set, as before.

1 cf_covariates <- training_dat %>% dplyr::select(starts_with("X"))
2 cf_outcome <- training_dat$outcome
3 cf_trtassign <- training_dat$W
4

5 ## run a causal forest
6 tau.forest <- grf::causal_forest(X = cf_covariates,
7 Y = cf_outcome, W = cf_trtassign)
8

9 #create testing matrix with same
10 # number cols as training cf_covariates in the same order
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11 cf_test_covariates <- testing_dat %>% dplyr::select(starts_with("X"))
12

13 # Estimate treatment effects for the test sample
14 tau.hat <- predict(tau.forest, newdata = cf_test_covariates,
15 estimate.variance = TRUE)
16

17 # store causal forest bias and standard errors
18 sigma.hat <- sqrt(tau.hat$variance.estimates) # sigma hat for each individual in n_test
19 CF.se[row.get, i] <- sigma.hat
20

21 # Column ’predictions’ contains estimates of the conditional average treatment effect (CATE)
22 cf.CATE[row.get, i] <- tau.hat$predictions
23 ## subtracting 2 vectors which should be composed of entries in the same positions in
24 # their respective data frames and storing them in the correct position
25

26 CF.bias[row.get, i] <- cf.CATE[row.get, i] - true_CATE.test

Listing 3.1: Causal forest R simulation example

3.3.3 Causal forest with Hyperparameter Optimization

In this variation of causal forest, we use cross validation to select optimal hyperparameters for forming causal forests

across the first 100 reps of the simulation. After 100 reps, all chosen hyperparameter values are averaged and used for

the following 1,900 simulation replicates in place of the default hyperparameters. Ideally hyperparameter optimization

would occur on every replicate, but this approach was too computationally expensive for this thesis.

1 if(cf.tune == TRUE & i <= 100 ){
2 tau.forest.tune <- grf::causal_forest(X = cf_covariates, Y = cf_outcome, W = cf_trtassign,

tune.parameters = "all")
3

4 cf_test_covariates <- testing_dat %>% dplyr::select(starts_with("X"))
5 tau.hat.tune <- predict(tau.forest.tune, newdata = cf_test_covariates, estimate.variance =

TRUE)
6 sigma.hat <- sqrt(tau.hat.tune$variance.estimates)
7 CF.se.tune[row.get, i] <- sigma.hat
8 cf.CATE.tune[row.get, i] <- tau.hat.tune$predictions
9 cf.ci.L.tune <- cf.CATE.tune[row.get, i] - qnorm(0.975) * sigma.hat

10 cf.ci.U.tune <- cf.CATE.tune[row.get, i] + qnorm(0.975) * sigma.hat
11 covered.CF.tune[row.get, i] <- ifelse(true_CATE.test >= cf.ci.L.tune & true_CATE.test <= cf.

ci.U.tune, 1, 0)
12

13 # record the bias
14 CF.tune.bias[row.get, i] <- cf.CATE.tune[row.get, i] - true_CATE.test
15

16 # store details about the cf tuned hyper parameters
17 cf.tune.HP[i, ] = c(unlist(tau.forest.tune$tuning.output$params), error = tau.forest.tune$

tuning.output$error)
18 }
19

20 if(cf.tune == TRUE & i == 101){
21 # extract the averages above
22 samp.frac <- mean(cf.tune.HP[,"sample.fraction"], na.rm = TRUE)
23 mt <- mean(cf.tune.HP[,"mtry"], na.rm = TRUE)
24 mns <- mean(cf.tune.HP[,"min.node.size"], na.rm = TRUE)
25 hs <- mean(cf.tune.HP[,"honesty.fraction"], na.rm = TRUE)
26 hpl <- ifelse(sum(cf.tune.HP[,"honesty.prune.leaves"], na.rm = TRUE) >= 15, 1, 0)
27 a <- mean(cf.tune.HP[,"alpha"], na.rm = TRUE)
28 ip <- mean(cf.tune.HP[,"imbalance.penalty"], na.rm = TRUE)
29 }
30

31 if(cf.tune == TRUE & i > 100){
32 # use the extacted values which I only had to calculate once
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33 tau.forest.tune <- grf::causal_forest(X = cf_covariates, Y = cf_outcome, W = cf_trtassign,
34 sample.fraction = samp.frac,
35 mtry = mt,
36 min.node.size = mns,
37 honesty.fraction = hs,
38 honesty.prune.leaves = hpl,
39 alpha = a,
40 imbalance.penalty = ip
41 )
42 # ... record the same parameters as above (omitted for brevity)
43 }

Listing 3.2: Causal forests with optimized hyperparameters

3.4 Performance Metrics

3.4.1 Bias

The bias metric refers to the difference between the individual’s true CAT Ei, the true CATE.test which is dictated

by the data generating mechanism and observed random variable values and the individual level estimated ĈATEi. For

a scenario with nrep number of simulation iterations, and ĈATEih as the CATE estimate for person i in iteration h:

Bias(CATEi) =
1

nrep

nrep

∑
h=1

ĈATEih −CATEi (3.3)

A density plot for average bias measures for one simulated scenario is included in Figure 4.1. The aggregated bias plots

in Sections 4.2 and 4.3 display the mean (points) and standard errors (bands) of the bias metrics across all individuals

within each scenario, i.e., aggregated mean bias in a particular scenario is given by:

1
n

n

∑
i=1

Bias(CATEi) (3.4)

3.4.2 Coverage

Coverage is calculated as the proportion of simulation replicates where the estimated confidence interval for CATEi

contains the true parameter value for each CATEi.

1
nrep

nrep

∑
h=1

I(CATEi ∈ {L̂ih,Ûih}) (3.5)

where L̂ih and Ûih represent the calculated lower and upper bounds of the confidence interval for CATEi in iteration h.

We would expect a 95% confidence interval formed in the same manner under hypothetical repeated trials to capture

the truth (unknown outside of simulation) 95% of the time to achieve nominal coverage. A density plot for coverage

for one simulated scenario is included in Figure 4.2. Later, the aggregated coverage plots in Sections 4.2 and 4.3

display the mean (points) and standard errors (bands) of the coverage metrics across all individuals in each scenario,

as described above.
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3.4.3 Standard Error

Standard error estimates are computed using either standard methods for linear regression (see Section 2.3.1) or based

on built in calculations described in the grf paper (Athey et al., 2019). The standard error is the square root of the

model-based variance estimate:

SE(ĈATEi) =

√
Var(ĈATEi) (3.6)

Since this is a simulation, empirical standard error estimates could also be recorded but we chose to report model

based standard errors in order to facilitate comparisons with confidence interval coverage as discussed in Chapter 4.

A density plot for standard errors for one simulated scenario is included in Figure 4.3. Later, the aggregated standard

error plots in Sections 4.2 and 4.3 display the mean (points) and standard errors (bands) of the standard error metrics

across all individuals within each scenario.
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CHAPTER 4

Results

4.1 Results for One Scenario

To evaluate the performance of each method, we record and plot sample statistics from each simulation scenario as

described in Section 3.4. Before introducing the aggregated results in Sections 4.2 and 4.3, we will describe results

from one example simulation scenario.

Consider a particular simulation scenario where there are n= 1,000 participants, j = 1 Normal true effect modifier,

k = 1 Bernoulli true effect modifier, and p = 10 nuisance variables under the true linear data generating mechanism

(with 2,000 replicates). First, outside of the simulation loop, the covariates are generated randomly following their

indicated distributions. In this example, 1,000 values of X1 ∼N(0,1) and X2 ∼Bernoulli(0.5) are generated and stored.

The true CATEi for each individual in the simulated trial is calculated by summing x1 + x2, resulting in n = 1,000

treatment effects. Nuisance variables are created in the same manner as the true effect modifiers, but given their status

as nuisance variables, they are not involved in the data generating process. Instead, they are only included when we fit

the model. For simplicity, these variables are also Bernoulli distributed.

In each replicate of the simulation loop, we generate the true outcome under control for all participants which

follows a standard Normal distribution (with the implication that the potential outcome has expectation = 0). Then,

the true response under treatment is computed by adding the control outcome value plus the treatment effect for

each participant. Next, the 1,000 participants are randomly assigned 1:1 to treatment and control groups. Following

treatment assignment, the simulated trial data is then split 1:1 into testing and training sets. Assignments are set using

row indexes, named row.get in the code chunks so that a record can be saved for each of the nrep = 2000 replicates.

Using the row index, a vector of the true individual treatment effects in the test data set is saved as true CATE.test,

which will allow us to assess confidence interval coverage. Then the model is fit either with linear regression or two

variants of causal forests: with default settings or with hyperparameter optimization, following the applicable procures

described above in Sections 2.3.1 and 2.4.3.

4.1.1 Bias

As described in Section 3.4.1, the bias is saved for each individual in the testing data set for each simulation. Since

each individual “participant” (indexed by row.get) has their true treatment effect assigned outside the simulation

loop, we can generate sample statistics for bias across all 2,000 simulation replicates, where each individual will be in

the holdout set of about half of the iterations per scenario. Results for the illustration example are shown in Figure 4.1.

While all methods have bias centered around 0, linear regression is much more concentrated at 0 (as expected under
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this linear data generating mechanism).

Figure 4.1: Density plots for bias of the ĈATEi in one highlighted simulation scenario. A red vertical reference line is
included for 0.

4.1.2 95% Confidence Interval Coverage

In our simulation, coverage indicators (described in Section 3.4.2) are stored in one column per replicate. So, for

a simulation with n = 1,000 participants and 2,000 replicates, we will have a coverage results matrix that is 1,000

rows and 2,000 columns. Based on probability theory, we would expect that a 95% confidence interval should capture

the true value (which would be unknown outside of the context of a simulation) 95% of the time to achieve nominal

coverage. For this reason, 1,000 row means are calculated and plotted as a density in 4.2. Note that causal forests

exhibit a strong left skew regardless of tuning, indicating individuals for whom most intervals do not capture the true

value.
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Figure 4.2: Density plots for confidence interval coverage proportions. Notice that some casual forest CIs for the
CATEi have very low coverage proportions.

4.1.3 Standard Error

As described in Section 3.4.3, the standard error is saved for each individual in the testing data set for each replicate

of the simulation. Results for the example scenario are in Figure 4.3.
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Figure 4.3: Density plots for SE(ĈATEi).

4.2 Aggregated Results for the Linear DGM

4.2.1 Bias

Under a linear data generating mechanism, all methods exhibit unbiasedness. However, as the number of true effect

modifiers increase, the range for the standard error of the bias of the causal forest based CATE estimators also increases

as shown in Figure 4.4, with some attenuation in the standard error of the bias when limited tuning is implemented.

Linear regression, when correctly specified, exhibits extremely small error bands, essentially difficult to visualize on

the plot in Figure 4.4. Interestingly, we observed that the standard errors of the causal forest bias estimators decrease

from the setting where there are 0 Normal effect modifiers (top left subplot Figure 4.4) compared to when there is 1

Normal effect modifier (top right subplot). Perhaps this is due to more relative ease for tree building with the presence

of a single Normally distributed random variable.
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Figure 4.4: Bias for the CATE under a linear data generating mechanism with 0 to 40 extraneous nuisance variables
(column wise facets) and 0 to 8 Bernoulli true effect modifiers (row wise facets) in each subplot. Labeled subplots
show aggregate bias metrics for the additional combination of 0, 1, 4, or 8 Normally distributed true effect modifiers.

4.2.2 95% Confidence Interval Coverage

In the null setting (where there are 0 true effect modifiers) all three methods are near 95% average 95% CI coverage

(Figure 4.5). We note that in the null case there is no true data generating mechanism (neither linear or nonlinear),

but the nuisance variables are included in the linear regression model in a linear manner. OLS has the best fidelity

to nominal coverage across all sample sizes (500 to 4,000) and numbers of nuisance variables considered (10− 40).

Causal forests with hyperparameter tuning had slightly below average nominal coverage, and in most cases causal
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forests with default settings are slightly above average nominal coverage. Coverage proportions over the nominal level

could be more concerning if this is due to overly wide confidence intervals that are not scientifically meaningful.

Figure 4.5: Coverage in the null setting for under a linear data generating mechanism. Situations did not include any
true effect modifiers but did include 10 to 40 extraneous nuisance variables included in the model. Note the y axis
range is from 0.9 to 1 in order to show detail.

In the next multi-panel plot displaying all combinations of effect modifiers and nuisance variables under a linear

DGM (Figure 4.6), we notice that there are some scenarios where linear regression and causal forests are comparable

in coverage, but many more scenarios where aggregate CI coverage is much lower for causal forests. The inclusion

of limited hyperparameter tuning does slightly improve coverage proportions. Linear regression, as expected, exhibits

nominal coverage at all sample sizes, nuisance variables, and combinations of true effect modifiers. In general for

causal forests, 95% CI coverage tends to decrease when there are more nuisance variables (across the subplot columns).

When there are zero, one, or four Normal effect modifiers, causal forests tend to have aggregated coverage pro-

portions improve as the sample size increases. We also notice a similar patter to the bias plots (Figure 4.4), where the

inclusion of one Normal effect modifier tends to improve causal forest estimator performance compare to when there

are zero Normal effect modifiers. Beyond the fact that the average coverage is much below 0.95 for casual forests, we

note that the standard error bands for the casual forest aggregated coverage metric are very wide.
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Figure 4.6: 95% confidence interval coverage under a linear data generating mechanism with 0 to 40 extraneous
nuisance variables (column wise facets) and 0 to 8 Bernoulli true effect modifiers (row wise facets) in each subplot.
Labeled subplots show aggregate bias metrics for the additional combination of 0, 1, 4, or 8 Normally distributed true
effect modifiers.

4.2.3 Standard Error

Estimator variance is reported on the scale of standard error. Under a linear data generating mechanism and 0 nuisance

variables (leftmost column of each subplot) and when there are 4 or 8 Normal effect modifiers (bottom two subplots),

OLS exhibits lower standard error than either causal forest method considered. When there are 0 or 1 Normal effect

modifiers (top two subplots) and 0 nuisance variables, linear regression and causal forests have very similar model-
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based standard errors.

Figure 4.7: Standard error for the individual CATE estimator under a linear data generating mechanism with 0 to
40 extraneous nuisance variables (column wise facets) and 0 to 8 Bernoulli effect modifiers (row wise facets) in
each subplot. Labeled subplots show aggregate standard error metrics for the additional combination of 0, 1, 4, or 8
Normally distributed effect modifiers.

Across all 4 subplots in Figure 4.7, once there are 20 or 40 nuisance variables, linear regression loses its optimality

advantage as we notice higher variance at lower sample sizes. The bottom rightmost plot represents a simulation

scenario with 8 Normal effect modifiers, 8 Bernoulli effect modifiers, and 40 Bernoulli nuisance variables, which

means we were fitting a model which would be vastly over parameterized based on the rule of thumb to include
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no more than 1 predictor for each 10 participants. The model would have 1 intercept +8+ 8+ 40 base parameters

+8+ 8+ 40 interaction terms = 113 total parameters for a 500 participant study with sample splitting performed.

No reasonable practitioner should fit such a linear model, so we do recognize that not all scenarios considered are

realistic. Finally, we will comment that although the model-based standard errors for linear regression tend to be

larger, the 95% CI coverage hits the nominal level in all situations (see Figure 4.6) so these standard errors might be

necessary to achieve nominal coverage.

4.3 Aggregated Results for the Nonlinear DGM

Recall that the nonlinear data generating mechanism situations did not include scenarios with Bernoulli effect modi-

fiers, as described in Section 3.1.

4.3.1 Bias

Once again, the methods considered are unbiased. Standard errors of the bias grow immensely under a nonlinear

data generating mechanism as the number of Normally distributed effect modifiers grows. Notice the the standard

error bands and y axes in Figure 4.8, especially contrasting between the subplot in the middle with four Normal effect

modifiers and the subplot on the right with eight Normal effect modifiers where the y axis suddenly extends from ±2

to ±20. As the sample size increases, the standard errors of the bias decrease for causal forests and furthermore, in

many scenarios, the standard errors of the bias are smaller for tuned causal forests. The standard errors for the bias

of (misspecified) linear regression remain constant across sample sizes and number of nuisance variables (they only

seem to be affected by the number of Normal effect modifiers).

Figure 4.8: Bias for the individualized CATEs under a nonlinear data generating mechanism with 0 to 40 extraneous
nuisance variables (column wise facets). Labeled subplots show aggregate bias metrics for 1, 4, or 8 Normally dis-
tributed true effect modifiers. The y axis expands for the 4 and 8 effect modifiers subplots.
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4.3.2 95% Confidence Interval Coverage

Simulation scenario results under a nonlinear DGM are plotted in Figure 4.9. We observe only reasonable performance

in settings where there is one Normally distributed effect modifier, with the superior method difficult to determine due

to overlapping standard error bands and variations across sample sizes and number of nuisance variables for the

aggregated mean points that are nearest to the nominal level. The gap in average 95% CI coverage between default

causal forests and causal forests that underwent hyperparameter optimization closes as more nuisance parameters are

added. Since the linear model is misspecified, the aggregated CI coverage performance is quite poor: 95% CI coverage

only meets the nominal level in a few limited scenarios. These include when there are more than 0 nuisance variables

and only one Normally distributed effect modifier (Figure 4.9). When there is only one Normally distributed effect

modifier and no nuisance variables, causal forests under the default hyperparameters achieve 95% nominal coverage

on average but OLS does not. In fact, in this setting, OLS’s average 95% CI coverage decreases as n increases from

500 to 4,000.

Figure 4.9: Coverage for under a nonlinear data generating mechanism with 1, 4, or 8 Normally distributed effect
modifiers (top, middle, and bottom row) with 0 to 40 extraneous nuisance variables (columns).
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When there are 8 Normally distributed effect modifiers (lower right subplot in Figure 4.6 and bottom row of Figure

4.9), average causal forest 95% CI coverage (whether or not hyperparameters optimization is included) fails to cross

50% regardless of the data generating mechanism in this simulation study. We note that tuning hyperparameters does

improve coverage. Overall, causal forests methods tend to improve as sample size increases, but outside of simple

scenarios, they seem to require more than n = 4000 (n = 2000 training data) to achieve nominal coverage.

4.3.3 Standard Error

We wondered how model misspecification for linear regression would affect the stability of the estimator’s variance.

As expected, we lose efficiency in a setting where linear regression is misspecified (especially with smaller sample

sizes and many nuisance variables as shown in Figure 4.10). As more binary nuisance variables are included in a

setting where there is nonlinear data generating mechanism (Figure 4.10) we see standard errors from linear regression

increase until they are much higher than causal forest’s CATE estimator’s standard error (especially apparent in smaller

sample sizes).

Figure 4.10: Standard error for the CATE estimator under a nonlinear data generating mechanism with 0 to 40 extra-
neous nuisance variables (column wise facets) and 0 to Bernoulli effect modifiers. Labeled subplots show aggregate
standard error metrics for 1, 4, or 8 Normal effect modifiers.

Notice the y axis has has a span of 0 to 14 in the right subplot of Figure 4.10 reflecting the fact that including

8 Normal effect modifiers under a nonlinear data generating mechanism greatly increases the variances of the CATE

estimator. Interestingly, for causal forests the standard errors remains relatively similar across the 0 to 40 nuisance

variables and the simulated trial enrollment, although we do note that standard error decreases slightly (as expected)

when the trial enrollment is larger.
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CHAPTER 5

Discussion

For the discussion, we revisit the questions posed in Section 1.4:

1. How can we reliably detect HTE in clinical trials?

2. What guidance can we offer to the practitioner in terms of what sample size is necessary to expect valid perfor-
mance of different estimators?

3. What guidance can we offer to the practitioner in terms of which method should be chosen to get better perfor-
mance at smaller sample sizes?

First, how can we reliably detect HTE in clinical trials? We think of reliability in two dimensions - the ability to detect

the absence of HTE when it is truly absent (specificity). Conversely, we also view reliability as being able to detect

HTE when it is present (sensitivity). From Figure 4.5 which covers the situations with 0 true treatment effect modifiers

and 10, 20, or 40 linearly included nuisance variables, notice that linear regression achieves nominal CI coverage at

all sample sizes and nuisance variables considered. Causal forests with hyperparameter tuning tended to moderately

undershoot 95% CI coverage while casual forests with default settings tended to overshoot CI coverage - which could

be more concerning if confidence intervals are overly wide. For reliability in terms of specificity of detecting HTE

through forming confidence intervals for ĈATEis reaching nominal coverage, linear regression performs as promised

at these sample sizes and under a linear inclusion of nuisance variables in the model.

In terms of sensitivity, linear regression also performs exceptionally under a linear data generating mechanism.

However, a linear DGM is likely not plausible in most real life situations, so many practitioners will be more interested

in comparing methods under a nonlinear DGM. In the nonlinear setting, causal forests tend to outperform linear

regression in 95% CI coverage, especially as sample sizes grow (see Figure 4.9), unless there is just one Normally

distributed effect modifier and some nuisance variables, in which case linear regression has comparable CI coverage

(top row of Figure 4.9). In terms of bias, all methods evaluated are unbiased, but causal forests have much larger

SE(Bias). As expected, as sample size increases, SE(Bias) decreases - except for misspecified linear regression which

has relatively constant SE(Bias) width across N (see Figure 4.8).

Practitioners may also want to consider how many treatment effect modifiers an expert could reasonably evaluate

in these analyses. If there are more than 4 and there are reasons to expect violations to assumptions of linearity,

none of the methods considered seem to reliably deliver nominal CI coverage under the settings considered. This is

concerning, as estimating individualized treatment effects with a moderate sample size and using models that consider

many potential effect modifiers is becoming a more common practice.
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For the second question, in terms of guidance we can offer to the practitioner for sample sizes necessary to expect

valid performance of different estimators, we can recommend linear regression at all linear settings based on the results

of our study. However, the plausibility of linearity is often dubious in practice. In the nonlinear settings considered in

this study, the recommendation is less straightforward and will require the practitioner and study team to consider the

sample size, number of covariates, and a forthright assessment of different potential subsets of covariates which may

act as true effect modifiers.

Third, to address the setting restricted to a smaller sample size, we cannot recommend casual forests without

significant caveats. We can say that if the sample size is smaller (n = 500 to 1,000, see Figures 4.9), misspecified

linear regression can outperform causal forest CI coverage on average, although the standard error bands overlap.

Some of these limitations were outlined in the seminal work developing causal forests (Wager and Athey, 2018). This

is an avenue for further active research.

Implementing limited hyperparameter tuning improves SE(Bias) and 95% CI coverage proportion as compared to

causal forests with default parameters. However, tuning is computationally expensive, so we did not include tuning in

every simulation replicate. It’s possible that causal forests (both varieties) have lower 95% CI coverage because the

model based standard errors are too small. Future work should consider a more extensive tuning procedure.

If there’s reason to believe the underlying model is linear, practitioners are likely better off using linear regression.

There are limited scenarios considered in which we would feel comfortable considering causal forests (with or without

tuning) - specifically when there is one Normal effect modifier and ideally when there is a larger sample size. However,

causal forests don’t require the practitioner to specify the model form, which could be considered a positive if one does

not want to impose structure, but could also be considered a negative in the sense that it generally means more data

points are needed to achieve valid inference. For very large trials with sample sizes beyond those considered in this

work, causal forests are likely still a prudent choice. It’s also possible to build linear regression models that are robust

to some types of model misspecification; practitioners may choose to include splines to accommodate departures from

linearity, which were not included in this study but which would be valuable to include in future work (Harrell, 2015).

On one hand, we do find reasons to agree with the statement that many “claims about improved predictive discrim-

ination from ML are exaggerated” (Kapoor and Narayanan, 2023) in the individualized treatment effect context. On

the other hand, current literature indicates promise for causal forest methods as well as increases in their popularity

(Inoue et al., 2024). For example, a survival causal forest algorithm did detect HTE in a retrospective validation anal-

ysis of a cardiac trial with a known effect modifier. The authors conclude “Carefully applied and validated predictive

models hold promise in identifying heterogeneous treatment effects and are useful for hypothesis generation regarding

the role of phenotypic characteristics in modifying the benefit of experimental interventions in clinical trials” (Desai

et al., 2024). Overall, these methods hold much promise but should be applied carefully in trials with modest sample

sizes.
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5.1 Limitations

These methods would not be feasible in early phase (i.e., small enrollment) safety clinical trials. Also, due to the

computational expense and timing constraints, only a limited hyperparameter tuning was considered in this simulation

study. As in any simulation study, only a limited group of settings were able to be studied. Furthermore, this study

did not include metaalgorithms (metalearners), which build on algorthms like random forests or Bayesian Additive

Regression Trees (BART) to estimate the CATE (Künzel et al., 2019). Metalearners have been touted to have the

capacity to significantly improve on the performance of causal forests (Künzel et al., 2019). Future work, includ-

ing a publication with additional simulation approaches and parameters, is planned to expand on this important and

interesting topic.
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