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SIMULATION

PART II: RESULTS

CONCLUSIONS

References and 
more details

1 ) How reliably can we detect HTE in clinical trials?
2) What sample size is necessary to expect valid performance of different estimators?
3) Given a sample size, which method should be chosen for better performance?

KEY QUESTIONS

lisalevoir.github.io/projects 

Our goal:
Investigate the finite-sample properties of popular methods for estimation and 
inference of individualized CATEs
Through simulation, we will consider:
A range of scenarios and sample sizes (with focus on sample sizes that are more 
commonly used in clinical trials) 
Our desired outcome:
Gain a better understanding of when one can achieve valid CATE inference using RCT 
data in practice.

The ATE exists when there is a mean difference between the treated and the control potential outcomes:

𝐴𝑇𝐸 = 𝐸 𝑌 ! − 𝑌 " = 𝐸[𝑌|𝑊 = 1] − 𝐸[𝑌|𝑊 = 0]

Association does not imply causation in general, but the design of a RCT can make plausible a set of 
assumptions under which association and causation can align. We can use these assumptions to identify 
the CATE, the average treatment effect conditional on belonging to a subgroup defined by 𝐱.

𝐶𝐴𝑇𝐸(𝐱) = 𝐸[𝑌(") − 𝑌($)|𝐗 = 𝐱]

?

𝐶𝐴𝑇𝐸% = 𝐸[𝑌(") − 𝑌($)|𝐗 = 𝐱𝐢]

PART I: SETUP

In each replicate, assign 
treatment or control on a 1:1 
basis.
Then, split this data 1:1 into 
“testing” and training 

Estimate	 "𝐶𝐴𝑇𝐸!𝑓𝑜𝑟 𝑖 = 1…𝑁 using training set
• Linear Regression
• Linear regression, misspecified
• Causal Forests
• Causal Forests, with hyperparameter tuning 

(caveat: tuning is computationally expensive, 
so it was not included in every simulation 
replicate after a limited sensitivity analysis)

Metrics to Compare
• Bias of	 "𝐶𝐴𝑇𝐸!
• 95% confidence interval coverage of "𝐶𝐴𝑇𝐸!
• Model based standard errors for estimating "𝐶𝐴𝑇𝐸!

Specifications
• Number of effect modifiers = 0, 1, 4, 8

• Distributions of these random variables: Standard 
Normal or Bernoulli(0.5)

• Number of nuisance variables = 0, 10, 20, or 40
• Total trial enrollment (N): 500, 1,000, 2,000, or 4,000
• Data generating mechanism = linear or nonlinear
• 2,000 replicates (to balance computational time with 

precision in inference)
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* Results not 
shown for all 

scenarios due 
to space 

constraints

Various methods for estimation and inference of "individualized'' CATEs have been 
proposed with good asymptotic properties, but the sample size required for good 
statistical properties may depend heavily on the underlying data. 

Despite this, many practitioners are implementing 
these methods in clinical trials with smaller or 

moderate sample sizes where the performance of 
these methods is not clear.

Simulate a trial with N 
participants, their 
baseline covariates 𝐗, 
true 𝐶𝐴𝑇𝐸! and true 
potential outcomes

One example 
scenario
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• Overall, these methods hold much promise but should be applied carefully in trials with modest sample sizes.
• Practitioners may want to consider how many treatment effect modifiers an expert could reasonably evaluate. If there are more than 4 and there are reasons to expect 

violations to assumptions of linearity, none of the methods considered seem to reliably deliver nominal CI coverage under the settings considered. This is concerning, 
since many practitioners seek to estimate individualized treatment effects with a moderate sample size and with models that consider many potential effect modifiers.

• We can expect linear regression to exhibit valid performance in all linear settings across sample sizes included in our study. We do notice higher standard errors which 
may be necessary to achieve nominal coverage.

• However, the plausibility of linearity is often dubious in practice. In the nonlinear settings considered in this study, the recommendation is less straightforward and will 
require the practitioner and study team to consider the sample size, number of covariates, and a forthright assessment of different potential subsets of covariates which 
may act as true effect modifiers.

• In the setting restricted to a smaller sample size, we cannot recommend casual forests without significant caveats. We can say that if the sample size is smaller (n = 500 
to 1, 000), misspecified linear regression can outperform causal forest CI coverage on average, although the standard error bands overlap. Some of these limitations 
were outlined in the seminal work developing causal forests (Wager and Athey, 2018) and this is an avenue for further active research.
• We can see the asymptotic nature of casual forests, but it’s also clear that good performance doesn’t happen until after N = 4,000 (which could be an issue for 

practitioners)

STANDARD ERROR NONLINEAR DGMLINEAR DGM

COVERAGE
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• Under a linear DGM, linear regression 
is the clear choice in terms of SE(Bias) 
and 95% CI coverage.

• However, a linear DGM is likely not 
plausible in most real-life situations, so 
we should compare methods under a 
nonlinear DGM.

• If there is only 1 Normally distributed 
treatment effect modifier under a 
nonlinear DGM (top row, far right plot), 
causal forests with default settings are 
a good choice for 95% CI coverage.

• Implementing hyperparameter tuning 
improves causal forests 95% CI 
coverage proportion as compared to 
default causal forests.

• All methods evaluated are unbiased, but 
causal forests have much larger SE(Bias).

• As expected, as sample size increases, 
SE(Bias) decreases - except for misspecified 
linear regression which has relatively 
constant SE(Bias) width across N.

• Implementing limited hyper parameter tuning 
improves SE(Bias)
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